

Nanoestruturas para células solares de 3^ª geração para a produção de hidrogénio verde

Gabriel Fernandes Manuel Camelo Sara Lisboa

Sofia Ramos

Monitores: João Freitas, Sofia Gonçalves

Objetivos

- Conhecer fontes de energia renováveis alternativas aos combustíveis fosséis
- Compreender o papel das células fotoeletroquímicas na produção de hidrogénio verde
- Estudar a hematite enquanto semicondutor, utilizando as técnicas:
 - Curvas j-V (densidade de corrente potencial)
 - Difração por raios-X (XRD)
 - Microscópio eletrónico de varredura (SEM)

Motivação

- Diminuir o uso de combustíveis fósseis (esgotáveis)
- Não aumentar o efeito de estufa
- Aumentar a produção de energia verde
- Solução para a crise energética
- Combater as alterações climáticas

Figura 1

Figura 2 – Esquema de Isoladores, semicondutores e condutores

Hematite

Vantagens

- Band Gap pequena
- Absorve até 40% do espetro solar
- Estabilidade à fotocorrosão
- Abundante na natureza
- Reduzido custo
- Não tóxico

Desvantagens

- Fraca condutividade
- Baixa mobilidade de cargas
- Baixo comprimento de difusão das lacunas
- Elevada recombinação dos eletrões e lacuna

Como culmatar as desvantagens

Nanoestruturação

- Aumento da área de superfície entre o semicondutor e eletrólito
- Aumento da eficiência da coleção de cargas
- Aumento da produção de hidrogénio

Dopagem

Promove a transferência de cargas

Células fotoeletroquímicas

- O sol promove a separação de cargas no semicondutor
- ii. Os e⁻ vão para o FTO e as h⁺ para o eletrólito
- iii. Os e⁻ são conduzidos para o contra-elétrodo
- iv. Os e⁻ produzem hidrogénio enquanto as h⁺ oxigénio

Figura 3 – Funcionamento da célula fotoeletroquímica

Amostras Fabricadas

Montagem Experimental

Elétrolitos e elétrodos utilizados:

- Eletrólito-NaOH
- Elétrodo de referência- Ag/AgCl
- Elétrodo de trabalho-Amostras
- Contra-elétrodo-Pt

Curvas j-V

Figura 6- Curvas j-V das amostra A, amostra B e amostra C.

Curvas j-V

Figura 6- Curvas j-V das amostra A, amostra B e amostra C.

O annealing e a dopagem fazem aumentar a fotocorrente e diminuir o V_{onset}

Difração de Raios-X (XRD)

Figura 7- Difratómetro de Raio-X

Difração de Raios-X (XRD)

Fase δ-FeOOH

- Reduziu-se a influência do
 - substrato.
 - Determinou-se as fases das amostras.
 - Identificou-se a direção preferencial do crescimento das estruturas.

Figura 8 – difractogramas de raio-X das amostêras A B e C

20 [°]

Microscopia de Varrimento de Eletrões (SEM)

Figura 9 – Microscópio de Varrimento de Eletrões (SEM)

- Tipos radiação detetada:
 - Eletrões Secundários

 (sofrem excitação e
 "escapam" da superfície da
 amostra semicondutora e
 não húmida);
 - Eletrões Retrodifundidos;
 - Raios X de fluorescência.

Microscopia de Varrimento de Eletrões (SEM)

- Tratamento térmico ("annealing") promove uma estrutura mais organizada.
- Facilita a incursão do eletrólito na amostra → aumenta área de superfície

Microscopia de Varrimento de Eletrões (SEM)

- Cálculo do comprimento dos nanofios
- Eletrões retrodifundidos permitem a distinção de elementos
- Maior Z → Maior retrodisperssão → Maior energia → Mais brilho Z_{Si} = 14 < Z_{Fe} = 26 < Z_{Sn} = 50

Figura 13 – Imagem lateral da amostra C

Análise de Raios-X dispersivos de energia (EDX)

https://docplayer.com.br/docs-images/102/153815617/images/15-0.jpg

- Amostra FeOOH possui sub-produtos do método hidrotérmico (ex.: Cl)
- Annealing elimina estes sub-produtos

Figura 14 – EDS das amostras A, B e C.

Conclusão

As células fotoeletroquímicas são o futuro e revolucionárias!

A nanoestruturação, o annealing e a dopagem contribuem para o aumento da eficiência destas células.

